Friday 2 February 2018

Biometrics: Moving Far Beyond Fingerprints

Biometrics is used in many places and there is a bright future for them. Coca Cola has recently replaced time card system with hand scanning machines. Finger print scanners are being used in many states of the US. They have been used to trace social welfare fraud. An iris pattern identification system is being used in Cook County, Illinois to ensure that right people are released from jail. ATM machines have been installed with finger scanners to prevent theft and fraud in Indiana (Jain, 2005).
The world’s major credit card companies are using finger scanning devices to protect credit card information and save the consumer from credit card fraud. Walt Disney World in Orlando has implemented a hand scanning system to prevent people from
spaming
The technology is many years away from development. Blood pulses on a finger can be measured by new biometric systems. This technology is currently under development. Nail bed identification is based on identifying distinct spatial arrangement beneath the fingernail. Gait recognition is another technology which is under development. This recognizes individuals by their distinctive walk and captures a sequence of images to derive and analyze motion characteristics. The technology is currently under development and its complete potential and limitations can be fully assessed. Many biometric identification systems are being developed and tested (Woodward, 2005).


Biometric technologies are getting better and finely tuned. The rate of false readings and errors has sharply fallen. However it still requires careful consideration and planning to implement a biometric identification system. They are most costly and complicated to implement as compared with other authentication systems. A proper evaluation of the system is important before purchasing any biometric system. A thorough risk analysis is necessary. In many cases biometrics may be overkill. Biometrics must be used if there is high level of risk involved. Customer acceptance is also important when logging on to company websites. Home users might not be ready to install biometrics on home computers for online banking.
Another consideration is where the digital data and templates will be stored. The… 
Many different aspects of human physiology, chemistry or behavior can be used for biometric authentication. The selection of a particular biometric for use in a specific application involves a weighting of several factors. Jain et al. (1999) identified seven such factors to be used when assessing the suitability of any trait for use in biometric authentication.
  • Universality means that every person using a system should possess the trait.
  • Uniqueness means the trait should be sufficiently different for individuals in the relevant population such that they can be distinguished from one another.
  • Permanence relates to the manner in which a trait varies over time. More specifically, a trait with 'good' permanence will be reasonably invariant over time with respect to the specific matching algorithm.
  • Measurability (collectability) relates to the ease of acquisition or measurement of the trait. In addition, acquired data should be in a form that permits subsequent processing and extraction of the relevant feature sets.
  • Performance relates to the accuracy, speed, and robustness of technology used (see performance section for more details).
  • Acceptability relates to how well individuals in the relevant population accept the technology such that they are willing to have their biometric trait captured and assessed.
  • Circumvention relates to the ease with which a trait might be imitated using an artifact or substitute.
Proper biometric use is very application dependent. Certain biometrics will be better than others based on the required levels of convenience and security. No single biometric will meet all the requirements of every possible application.
The block diagram illustrates the two basic modes of a biometric system. First, in verification (or authentication) mode the system performs a one-to-one comparison of a captured biometric with a specific template stored in a biometric database in order to verify the individual is the person they claim to be. Three steps are involved in the verification of a person. In the first step, reference models for all the users are generated and stored in the model database. In the second step, some samples are matched with reference models to generate the genuine and impostor scores and calculate the threshold. Third step is the testing step. This process may use a smart card, username or ID number (e.g. PIN) to indicate which template should be used for comparison. 'Positive recognition' is a common use of the verification mode, "where the aim is to prevent multiple people from using the same identity".
Second, in identification mode the system performs a one-to-many comparison against a biometric database in an attempt to establish the identity of an unknown individual. The system will succeed in identifying the individual if the comparison of the biometric sample to a template in the database falls within a previously set threshold. Identification mode can be used either for 'positive recognition' (so that the user does not have to provide any information about the template to be used) or for 'negative recognition' of the person "where the system establishes whether the person is who she (implicitly or explicitly) denies to be" The latter function can only be achieved through biometrics since other methods of personal recognition such as passwords, PINs or keys are ineffective.
The first time an individual uses a biometric system is called enrollment. During the enrollment, biometric information from an individual is captured and stored. In subsequent uses, biometric information is detected and compared with the information stored at the time of enrollment. Note that it is crucial that storage and retrieval of such systems themselves be secure if the biometric system is to be robust. The first block (sensor) is the interface between the real world and the system; it has to acquire all the necessary data. Most of the times it is an image acquisition system, but it can change according to the characteristics desired. The second block performs all the necessary pre-processing: it has to remove artifacts from the sensor, to enhance the input (e.g. removing background noise), to use some kind of normalization, etc. In the third block necessary features are extracted. This step is an important step as the correct features need to be extracted in the optimal way. A vector of numbers or an image with particular properties is used to create a template. A template is a synthesis of the relevant characteristics extracted from the source. Elements of the biometric measurement that are not used in the comparison algorithm are discarded in the template to reduce the filesize and to protect the identity of the enrollee.
During the enrollment phase, the template is simply stored somewhere (on a card or within a database or both). During the matching phase, the obtained template is passed to a matcher that compares it with other existing templates, estimating the distance between them using any algorithm (e.g. Hamming distance). The matching program will analyze the template with the input. This will then be output for any specified use or purpose (e.g. entrance in a restricted area).Selection of biometrics in any practical application depending upon the characteristic measurements and user requirements. In selecting a particular biometric, factors to consider include, performance, social acceptability, ease of circumvention and/or spoofing, robustness, population coverage, size of equipment needed and identity theft deterrence. Selection of a biometric based on user requirements considers sensor and device availability, computational time and reliability, cost, sensor size and power consumption.

Multimodal biometric system

Multimodal biometric systems use multiple sensors or biometrics to overcome the limitations of unimodal biometric systems. For instance iris recognition systems can be compromised by aging irises and finger scanning systems by worn-out or cut fingerprints. While unimodal biometric systems are limited by the integrity of their identifier, it is unlikely that several unimodal systems will suffer from identical limitations. Multimodal biometric systems can obtain sets of information from the same marker (i.e., multiple images of an iris, or scans of the same finger) or information from different biometrics (requiring fingerprint scans and, using voice recognition, a spoken pass-code).
Multimodal biometric systems can fuse these unimodal systems sequentially, simultaneously, a combination thereof, or in series, which refer to sequential, parallel, hierarchical and serial integration modes, respectively. Fusion of the biometrics information can occur at different stages of a recognition system. In case of feature level fusion, the data itself or the features extracted from multiple biometrics are fused. Matching-score level fusion consolidates the scores generated by multiple classifiers pertaining to different modalities. Finally, in case of decision level fusion the final results of multiple classifiers are combined via techniques such as majority voting. Feature level fusion is believed to be more effective than the other levels of fusion because the feature set contains richer information about the input biometric data than the matching score or the output decision of a classifier. Therefore, fusion at the feature level is expected to provide better recognition results.
Spoof attacks consist in submitting fake biometric traits to biometric systems, and are a major threat that can curtail their security. Multi-modal biometric systems are commonly believed to be intrinsically more robust to spoof attacks, but recent studies have shown that they can be evaded by spoofing even a single biometric trait.

Performance

The following are used as performance metrics for biometric systems:
  • False match rate (FMR, also called FAR = False Accept Rate): the probability that the system incorrectly matches the input pattern to a non-matching template in the database. It measures the percent of invalid inputs that are incorrectly accepted. In case of similarity scale, if the person is an imposter in reality, but the matching score is higher than the threshold, then he is treated as genuine. This increases the FMR, which thus also depends upon the threshold value.
  • False non-match rate (FNMR, also called FRR = False Reject Rate): the probability that the system fails to detect a match between the input pattern and a matching template in the database. It measures the percent of valid inputs that are incorrectly rejected.
  • Receiver operating characteristic or relative operating characteristic (ROC): The ROC plot is a visual characterization of the trade-off between the FMR and the FNMR. In general, the matching algorithm performs a decision based on a threshold that determines how close to a template the input needs to be for it to be considered a match. If the threshold is reduced, there will be fewer false non-matches but more false accepts. Conversely, a higher threshold will reduce the FMR but increase the FNMR. A common variation is the Detection error trade-off (DET), which is obtained using normal deviation scales on both axes. This more linear graph illuminates the differences for higher performances (rarer errors).
  • Equal error rate or crossover error rate (EER or CER): the rate at which both acceptance and rejection errors are equal. The value of the EER can be easily obtained from the ROC curve. The EER is a quick way to compare the accuracy of devices with different ROC curves. In general, the device with the lowest EER is the most accurate.
  • Failure to enroll rate (FTE or FER): the rate at which attempts to create a template from an input is unsuccessful. This is most commonly caused by low quality inputs.
  • Failure to capture rate (FTC): Within automatic systems, the probability that the system fails to detect a biometric input when presented correctly.
  • Template capacity: the maximum number of sets of data that can be stored in the system.
 

No comments:

Post a Comment